Iteration of exponential functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit summability of ultra exponential functions

In [1] we uniquely introduced ultra exponential functions (uxpa) and denednext step of the serial binary operations: addition, multiplication and power.Also, we exhibited the topic of limit summability of real functions in [2,3]. Inthis paper, we study limit summability of the ultra exponential functions andprove some of their properties. Finally, we pose an unsolved problem aboutthem.

متن کامل

Iteration of Meromorphic Functions

4. The Components of the Fatou set 4.1. The types of domains of normality 4.2. The classification of periodic components 4.3. The role of the singularities of the inverse function 4.4. The connectivity of the components of the Fatou set 4.5. Wandering domains 4.6. Classes of functions without wandering domains 4.7. Baker domains 4.8. Classes of functions without Baker domains 4.9. Completely in...

متن کامل

limit summability of ultra exponential functions

in [1] we uniquely introduced ultra exponential functions (uxpa) and de nednext step of the serial binary operations: addition, multiplication and power.also, we exhibited the topic of limit summability of real functions in [2,3]. inthis paper, we study limit summability of the ultra exponential functions andprove some of their properties. finally, we pose an unsolved problem aboutthem.

متن کامل

Exponential Lower Bounds for Policy Iteration

We study policy iteration for infinite-horizon Markov decision processes. It has recently been shown policy iteration style algorithms have exponential lower bounds in a two player game setting. We extend these lower bounds to Markov decision processes with the total reward and average-reward optimality criteria.

متن کامل

Iteration Functions re-visited

Two classes of Iteration Functions (IFs) are derived in this paper. The first (one-point IFs) was originally derived by Joseph Traub using a different approach to ours (simultaneous IFs). The second is new and is demonstrably shown to be more informationally efficient than the first. These IFs apply to polynomials with arbitrary complex coefficients and zeros, which can also be multiple.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Academiae Scientiarum Fennicae Series A I Mathematica

سال: 1984

ISSN: 0066-1953

DOI: 10.5186/aasfm.1984.0903